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Abstract

This article provides a definitive review of experimental studies of the role of wild animals and 

livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus 

(CCHFV), the etiologic agent of Crimean-Congo hemorrhagic fever (CCHF), beginning with the 

first recognized outbreak of the human disease in Crimea in 1944. Published reports by 

researchers in the former Soviet Union, Bulgaria, South Africa, and other countries where CCHF 

has been observed show that CCHFV is maintained in nature in a tick-vertebrate-tick enzootic 

cycle. Human disease most commonly results from the bite of an infected tick, but may also 

follow crushing of infected ticks or exposure to the blood and tissues of infected animals during 

slaughter. Wild and domestic animals are susceptible to infection with CCHFV, but do not develop 

clinical illness. Vertebrates are important in CCHF epidemiology, as they provide blood meals to 

support tick populations, transport ticks across wide geographic areas, and transmit CCHFV to 

ticks and humans during the period of viremia. Many aspects of vertebrate involvement in the 

maintenance and spread of CCHFV are still poorly understood. Experimental investigations in 
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wild animals and livestock provide important data to aid our understanding of CCHFV ecology. 

This article is the second in a series of reviews of more than 70 years of research on CCHF, 

summarizing important findings, identifying gaps in knowledge, and suggesting directions for 

future research.
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1. Scope of this review

This article reviews experimental studies of the roles of wild and domestic vertebrates in the 

maintenance and transmission of Crimean-Congo hemorrhagic fever virus (CCHFV) that 

have been published since the first recognized outbreak of the disease in 1944. It is the 

second article in a series that aims to provide a definitive account of research on Crimean-

Congo hemorrhagic fever (CCHF), which has not been thoroughly examined since the 

monumental monograph by the noted acarologist Harry Hoogstraal was published in 1979 

(1). The first paper reviewed seroepidemiologic studies of the geographic distribution, host 

range, and frequency of CCHFV infection of wild and domestic animals (2). Additional 

articles in this series will review the role of ticks in the maintenance of CCHFV and its 

transmission to vertebrates including humans, and the attempts to replicate important 

features of CCHF through experimental infection of laboratory animals. Readers are also 

referred to a general review of the epidemiology, viral genetic diversity, and other features of 

CCHF; a review of the public health implications of CCHF; and a recent review of 

experimental molecular studies of the virus (3–5).

2. Background: maintenance and transmission of CCHFV

CCHF was first recognized in the Crimean peninsula in 1944–1945, when more than 200 

cases of a severe febrile illness occurred in soldiers working to restore agricultural 

production in farmland abandoned during the German occupation (6). Mikhail Chumakov, 

who had previously characterized the maintenance cycle of tick-borne encephalitis in the 

Soviet Far East, led the team of scientists sent to investigate the outbreak. An association of 

what was then called Crimean disease with tick bites was quickly recognized, and a viral 

etiology was established through experimental infection studies via inoculation of filtered 

tick extracts (7,8).

The Crimean outbreak exemplified the major features of CCHF. The disease occurred 

exclusively in the agricultural steppe, while no cases were reported in towns or wooded 

areas. The outbreak coincided with a period of unusually high tick numbers in the spring and 

early summer of 1944, and most patients reported a tick bite prior to illness. Although a 

large number of soldiers became ill, there was no evidence of person-to-person transmission. 

As described in the 1945 expedition report (6), more than 3000 blood-sucking arthropods 

were collected, but the most common parasite was the tick Hyalomma marginatum, which is 

now recognized to be the principal vector of CCHFV in Russia and adjacent areas.

Spengler et al. Page 2

Antiviral Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCHFV (family Bunyaviridae; genus Nairovirus) circulates silently in a tick-vertebrate-tick 

enzootic cycle (1,3,9) (Figure 1), with a brief viremia in vertebrates and prolonged viral 

maintenance in ticks by transstadial and transovarial transmission, and, less efficiently, by 

venereal transmission (9). Nairoviruses are a genetically highly diverse group, and 

congruence between phylogenies supports coevolution of nairoviruses and ticks (10,11). 

Tick life cycles are dependent on animal hosts, and are defined by the number of hosts they 

feed on while developing through the three parasitic life stages (larva, nymph, adult) before 

the adult female drops off the host for oviposition after the final blood meal (Figure 2). Over 

30 tick species, including one-, two-, and three-host species, have been implicated in 

CCHFV ecology (1,12); CCHFV vector and reservoir competence remains unknown for 

many of these species. One-host ticks (e.g., Rhipicephalus annulatus, Rhipicephalus 
decoloratus, Rhipicephalus microplus) remain on one host, typically a large mammal like a 

cow, during all life stages. Two-host ticks (e.g., H. marginatum complex of species, 

Hyalomma detritum, Hyalomma anatolicum) feed and remain on the first host, typically a 

small mammal, during the larval and nymphal life stages, and then drop off and attach to a 

different host, usually a larger mammal, as adults for a final blood meal. Three-host ticks 

(e.g., Ixodes ricinus, Haemaphysalis punctata, Dermacentor marginatus) drop off and 

reattach to a new host during each life stage, generally using small vertebrates for the two 

initial stages and large mammals for the final meal. Consideration of tick and vertebrate host 

ecology in CCHFV is complex. While some vector species may locally exhibit a narrow host 

range (e.g., Hyalomma dromedarii for dromedary camels, and Hyalomma aegyptium for 

Testudo species tortoises [13]), most have a wide host range. For example, I. ricinus has over 

300 putative hosts, including many birds and lizards (14–16).

Because wild and domestic animals infected with CCHFV do not show signs of illness, 

serological surveys have been the principal source of information to identify species exposed 

to the virus and to monitor areas with natural virus transmission. However, tests performed 

on serum collected from vertebrates do not provide data on characteristics and kinetics of 

infection. Experimental infection studies have been performed in a variety of wild and 

domestic animals to assess susceptibility to infection, duration of viremia, antibody 

response, absence or presence of clinical disease, and contribution of vertebrate species as 

hosts in CCHFV maintenance and transmission. Data from these studies are useful in 

assessing the risk of CCHF emergence in new geographic areas, focusing One Health 

countermeasures for reducing endemic viral transmission (e.g., by targeted acaricide 

treatment), assessing risk in cases of direct human exposure to potentially infected animal 

tissues and body fluids, identifying gaps in knowledge, and directing future research efforts 

(4,17–20).

Notably, these clinical infection studies and almost all of the important work on CCHFV 

were performed after the application of the pivotal newborn white mouse (NWM) isolation 

technique (21,22). Attempts to recover the etiologic agent were largely unsuccessful for 

more than two decades after the Crimean outbreak. In efforts to isolate virus from animals 

prior to use of the NWM technique, clinical disease was often attributed to the presence of a 

contaminating organism (e.g., studies in cats [6,25]). In 1964–1965, CCHFV isolated from 

the blood of patients was successfully passaged in tissue culture; passage was confirmed by 

using the fluorescent antibody method and interference phenomenon using vesicular 
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stomatitis virus and Chikungunya virus (24,25). However, in the late 1950s and 1960s, 

arbovirus researchers discovered that many viruses are more successfully propagated 

through intracranial infection of NWM (21,22). The introduction of this simple but highly 

sensitive method revolutionized CCHFV research by providing a means to isolate and 

quantitate virus recovered from human patients, animals, and ticks, and facilitating the 

development of serologic tests and other research tools (1,26–29).

3. Experimental infection in wild mammals

Wild mammals are important hosts for ticks and likely aid in CCHFV amplification and 

transmission from infected to naïve co-feeding ticks. In general, CCHFV replicates and 

produces a short viremic period in small mammals (2–15 days), followed by development of 

anti-CCHFV antibodies (Table 1). Thus, small mammals do not appear to serve efficiently as 

long-term CCHFV reservoirs. They do, however, play an important role in CCHFV ecology, 

and population increases (e.g., in hares) have been associated with disease outbreaks. Of 

note, the studies detailed below are limited to small mammalian species, and although 

serological data do exist (as detailed in Spengler et al. [2]), to our knowledge, no 

experimental studies have been performed in larger wild mammalian species.

3.1. Hares

Small mammals provide blood meals for two- and three-host ticks like D. marginatus and 

Hyalomma asiaticum. The initial report from the Crimean outbreak implicated the European 

hare (Lepus europaeus) as central in maintaining CCHFV; the L. europaeus population 

reportedly exploded during the original CCHF outbreak in the Crimea (1). Indeed, hares are 

widely distributed and are still considered to be primary hosts of several CCHFV vectors in 

many CCHF-endemic areas in Europe. Moreover, of the 11 reported isolates of CCHFV 

from animals, three were from L. europaeus in the Crimea region of Ukraine (30). An 

overgrowth of vegetation due to cessation of farming, and an expansion of the hare 

population (and the associated abundance of ticks) were described during several CCHF 

outbreaks, including the initial Crimean outbreak and outbreaks in the former Soviet Union, 

Bulgaria, Kosovo, and Turkey (31–33).

3.1.1. Former Soviet Union—Hares were included in early experimental investigations 

of CCHFV persistence in the tick. Zgurskaya et al. (1971) used hares inoculated 

intravenously (IV) and intramuscularly (IM) as infection sources for Hyalomma ticks (34). 

NWM were used to assess viremia in the hares 4–18 days post infection (dpi). Viremia was 

detected in L. europaeus until 15 dpi, with peak viremia of 1.2 × 105 LD50/mL at 4 dpi. 

(LD50 in this and subsequently described studies refers to the virus dose lethal to 50% of 

inoculated NWM.) In additional studies on threshold CCHFV levels in Hyalomma ticks by 

Zgurskaya (1975), a hare (species not reported; n = 1) was inoculated IV and IM with a 

NWM brain suspension. Viremia was confirmed at 4–6 dpi (transmission studies further 

detailed in Section 6.2).

Perelatov et al. (1972) studied hares trapped on a hunting farm in the Ust’-Donets region 

(Russia, Rostov Region). Six 1–2-year-old naïve European hares were inoculated with 105 

LD50 of strain Sudarkina CCHFV (35). Infection was performed via intracardiac, 
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subcutaneous (SC), or intradermal (ID) inoculation, with two animals infected by each 

inoculation route. After infection, no clinical signs were noted during the 2-year observation 

period. Viremia was investigated in whole or diluted blood. Detection and magnitude of 

viremia varied by route of inoculation: with SC inoculation, viremia was lowest and was 

detected at 1, 2, and 5 dpi; intracardiac inoculation produced intermediate viremia levels 

detectable 2, 4, 5, and 9 dpi, but not 6, 7, and 8 dpi; and ID inoculation resulted in the 

highest viremia levels detectable 1–10 dpi. Why viremia was detected intermittently is not 

clear, but is likely explained by the sensitivity of assays used in those experiments. 

Antibodies were detected by complement fixation (CF) beginning 7 dpi and throughout an 

extended observation period (28–45 dpi); data were not detailed for each inoculation group 

(35).

3.1.2. Africa—In agreement with the above studies, Shepherd et al. (1989) reported a 

comparable viremia in scrub hares (Lepus saxatilis) inoculated SC with CCHFV strain SPU 

4/81. Viremia was detected 1–7 dpi, with highest virus titers (1.6 × 104 LD50/mL) detected 

between 2–5 dpi (36). Along with vector studies and knowledge of host factors like foraging 

behavior and geographic distribution, these limited experimental infection investigations 

support the hypothesis that hares can replicate CCHFV, and provide antibody data for 

interpreting serological studies.

3.2. Ground squirrels

Some CCHFV-transmitting tick species, like D. marginatus, occasionally feed on ground 

squirrels and hedgehogs. These mammals are suitable hosts for the instar life stages of many 

tick species, as they spend significant time rummaging through leaf litter and brush where 

immature ticks are present. Two types of ground squirrels have been experimentally 

infected, and findings were comparable in both studies.

3.2.1. Former Soviet Union—Blagoveshchenskaya et al. (1972) infected fifty 1–1.5-

month-old susliks (Spermophilus pygmaeus) intracranially (IC), or IM and SC with strains 

Sudarkina and Hp-15 Zhr (37). Clinical signs were reported as absent in “most” animals, 

with no further details provided. Irrespectively of inoculation method, only slight 

immunomorphological changes were observed in the reticulohistocytic system, mainly 

lymph nodes and spleen, with peak changes observed 5–7 dpi. These organs appeared 

normal after 30–40 dpi, and morphological changes were absent in other organs and tissues. 

CCHFV was detected in the blood and parenchymal organs of all animals 2–7 dpi, but not 

later. Blood and parenchymal organ suspensions (diluted to 10−2) caused specific disease 

and death of NWM (37).

3.2.2. Africa—Shepherd et al. (1989) infected Cape ground squirrels (Xerus inauris) with 

SPU 4/81 strain. Viremia began at 2–8 dpi and lasted 7 days. Anti-CCHFV antibodies were 

detected 8 dpi by reverse passive hemagglutination inhibition (RPHI), with maximum titer 

detected 512 dpi (36).
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3.3. Hedgehogs

In contrast to studies of ground squirrels, experimental studies on the susceptibility of 

hedgehog species to CCHFV yielded varying results, suggesting that susceptibility to 

CCHFV and infection dynamics may vary even between related species.

3.3.1. Former Soviet Union—In addition to hares, long-eared hedgehogs (Hemiechinus 
auritus) were also included by Zgurskaya et al. (1971) in early investigations of virus 

persistence in ticks (34). Hedgehogs were inoculated IV and IM as infection sources for 

Hyalomma ticks, but the magnitude of viremia was not reported (transmission studies 

detailed in Section 6.2). Blagoveshchenskaya et al. (1972) infected seven European 

hedgehogs (Erinaceus europaeus) and two long-eared hedgehogs (H. auritus) SC with strain 

Sudarkina, and no clinical signs were observed in any of the animals (38). Viremia was 

detected in H. auritus 2–6 dpi, peaking at 4–6 dpi, but no viremia was detected in E. 
europaeus. Noteworthy, H. auritus is common in Central Asia in regions endemic for 

CCHFV, while E. europaeus is found in Europe in regions that are generally free of CCHFV.

3.3.2. Africa—Shepherd et al. (1989) infected African hedgehogs (Atelerix frontalis) SC 

with strain SPU 4/81. Viremia was not detected, but anti-CCHFV antibodies were detected 

by RPHI starting 8 dpi and reaching a maximum titer at 256 dpi (36).

3.4. Small rodents

3.4.1. Africa—Shepherd et al. (1989) investigated infection in several small wild rodent 

species inoculated SC with 1 × 106–2.5 × 106 LD50 of strain SPU 4/81(36). Viremia ranging 

3.2 × 101–1 × 104 LD50/mL and lasting 3–7 days was detected in white-tailed rats 

(Mystromys albicaudatus), red veld rats (Aethomys chrysophilus), bushveld gerbils 

(Gerbilliscus leucogaster), and four-striped grass mice (Rhabdomys pumilio). Viremia was 

not detected in highveld gerbils (Gerbilliscus brantsii), southern multimammate mice 

(Mastomys coucha), multimammate mice (Mastomys natalensis), and Namaqua gerbils 

(Desmodillus auricularis). Antibodies were detected in all species tested (sampled up to ≥ 35 

dpi), with the exception of R. pumilio, which may have been due to limited sampling in that 

species (up to 8 dpi).

4. Experimental infection in livestock

Several CCHFV tick vectors feed on a variety of domestic animals, and may also be 

synanthropically associated with humans. Large domestic animals are known to support a 

high tick burden and bring ticks into close proximity to farmers. They can also expose 

humans to CCHFV directly through infected blood or crushing of engorged ticks on the 

animals during slaughtering (39–43). Seroepidemiological investigations have shown that a 

wide spectrum of domestic species is exposed to CCHFV (2), but experimental infection 

studies have been markedly more limited and have focused almost exclusively on assessment 

of viremia alone. Although small in number, experimental infections have been performed in 

several livestock species, including ruminants (cattle, sheep) and equids (horses, donkeys); 

these studies are summarized in Table 2.
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Similarly to small mammals, livestock and equids develop a transient viremia and anti-

CCHFV antibodies ~1 week post-inoculation. Additionally, maternal transfer of anti-

CCHFV antibodies was demonstrated in sheep. These studies also further support the 

absence of clinical signs in the majority of animals tested, with the exception of sheep and 

horses. In the horse study, due to the nature of the inoculum, clinical signs (fever) were most 

likely associated with non-specific reaction to the inoculum matrix rather than virus 

infection (44). Whether CCHFV infection or the inoculum caused the fever in sheep is less 

clear, as the febrile period coincided with the viremic period (45). While these data help to 

provide a better understanding of infection in domestic species, they each include only a 

small number of animals, providing challenges for interpretation, and must be broadly 

considered.

4.1. Cattle

4.1.1. Former Soviet Union—Zarubinsky et al. (1976) experimentally infected calves 

with the Sudarkina strain (46). Two 6-month-old calves were inoculated either IM or SC, 

and two 2-month-old calves were inoculated both SC and ID. Clinical disease was not 

observed in any of the animals, and viremia was not detected in the 6-month-old calves; 

however, CCHFV was isolated from the blood of one of the 2-month-old calves at 3 and 7 

dpi, supporting the possibility of virus transmission to humans from exposure to blood of 

infected animals (18–20). Anti-CCHFV antibodies, detected by agar-gel diffusion 

precipitation (AGDP) performed 5–20 dpi in samples from the 6-month-old calves, were 

seen at 13 and 17 dpi in the SC-infected and the IM-infected calf, respectively; antibodies 

were detected by CF only in the IM-infected animal (17 dpi). Additionally, antibodies were 

investigated in the SC/ID inoculated 2-month-old calves using the indirect hemagglutination 

inhibition test 5–35 dpi (47); antibody titers of 1:10 were detected in 1 calf on days 9, 14, 

and 20 after infection, increasing to 1:80 at 35 dpi. Smirnova (1979) inoculated calves with a 

variety of strains of CCHFV (48). As described for other animals tested (Section 4.2.1, 

4.3.1), calves developed antibodies detectable by AGDP and CF, and viremia was observed 

at 2 to 5–7 days (viremic period reported collectively for all species tested).

4.1.2. Africa—In 1970, Causey et al. isolated CCHFV from cattle, a goat, and a hedgehog. 

Two White Fulani (Bunaji) breed calves, 9 and 10 months of age, were inoculated with the 

goat isolate (IbAn 7620) (49). One calf was inoculated SC with 2.0 × 108 LD50 (low dose 

animal), and the other calf was inoculated both SC (2.0 × 108 LD50) and ID (1.3 × 107 

LD50) (dual route, high dose animal). Five days prior to inoculation, feeding capsules of 

laboratory-reared Hyalomma rufipes ticks were attached to each animal (transmission data 

further discussed in Section 6.2). Prior to the study, ticks and calves all tested negative for 

CCHFV and neutralizing antibodies to CCHFV, respectively. After inoculation, both calves 

developed mild illness, characterized by dullness, lassitude, and decreased appetite. Viremia 

was detected 2 and 5 dpi in the low-dose calf, and 1–5 dpi in the high-dose calf. Viremia was 

determined by inoculation of suckling mice, and CCHFV presence was confirmed by 

compliment fixation (49).

Shepherd et al. (1991) inoculated two cows SC with CCHFV strain SPU 4/81 to assess 

transmission to ticks. The cows were viremic 5–8 dpi or on 6 dpi. In accordance with the 
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previous studies, no clinical signs were reported (50). Tick transmission data are reviewed 

below (Section 6.2).

4.2. Sheep

4.2.1. Former Soviet Union—Kondratenko et al. (1968) identified cattle, sheep, and 

goats as the main hosts of adult ixodid tick vectors of CCHFV in Rostov Oblast 

(Kondratenko et al. 1968, in [46]). Thus, in addition to experimental infection of cattle (see 

4.1), Zarubinsky et al. (1976) experimentally infected five lambs (2–2.5 months old) SC and 

ID with the Sudarkina strain (46). No clinical disease was observed in any of the animals, 

but CCHFV was isolated from the blood of all lambs (4–8 dpi in lamb 1; 4–5 dpi in lamb 2; 

6–8 dpi in lamb 3; 4–6 dpi in lamb 4; and 4–7 dpi in lamb 5). AGDP analysis of lamb sera 

5–35 dpi indicated the presence of precipitating antibodies at 21 dpi (lambs 1, 2, 3, and 5) 

and 35 dpi (lamb 4). Smirnova (1979) inoculated sheep with various CCHFV strains (48). 

As described for other animals tested (Section 4.1.1, 4.3.1), sheep developed antibodies 

detectable by AGDP and CF, and viremia was observed at 2 to 5–7 days (viremic period 

reported collectively for all species tested, so exact timing for each species is unclear).

4.2.1. Africa—To understand the impact of infection on sheep and their ability to replicate 

CCHFV, Gonzalez et al. (1998) infected 10 adult (> 1 year old) naïve sheep intraperitoneally 

(IP; n = 2) or via CCHFV-infected Hyalomma truncatum ticks (n = 8) with CCHFV strain 

HD 49199 (45). Fever (39.7°C ± 0.3) was observed in the sheep beginning at 3 dpi, peaking 

around 1°C above normal for 5 days and declining within 36 h thereafter. Viremia was 

detected in all infected animals and correlated with fever, starting at 3 dpi, peaking at 5 dpi 

(5.0 × 104 LD50/mL), and lasting 4–7 days total. Interestingly, no differences were noted 

between IP- and tick bite-infected sheep. Renal and liver functions were assessed in a subset 

of the infected sheep; in all sheep, a slight but significant increase was observed in aspartate 

aminotransferase levels for 3 to 10 days starting at 3 dpi, but no changes were observed in 

azotemia, creatinemia, or alanine aminotransferase. Five of the infected sheep were pregnant 

ewes, of which four normally delivered healthy lambs and one spontaneously aborted. No 

virus was isolated from the aborted fetus, suggesting unrelated etiology of the abortion. 

Enzyme-linked immunosorbent assays (ELISA) of non-immune sheep samples showed an 

IgM response 7 dpi, followed by an IgG response one day later.

In studies investigating ticks species as potential vectors of CCHFV (described in Section 

6.1), Shepherd et al. (1989) reported that sheep inoculated via infected ticks developed mild 

fever and a low viremia (max intensity 103 LD50/mL) lasting 2–5 days, followed by the 

development of antibodies detectable by immunofluorescence (IF) (51).

Wilson et al. (1991) used IP inoculation of 3.2 × 105 LD50 of strain Dak H49199 to 

challenge previously exposed, maternally exposed, and naïve sheep with varying levels of 

previous exposure to CCHFV (52). The group found that viremia corresponded to previous 

exposure: naïve-infected sheep in the study developed the highest and most prolonged 

viremia detected 2–6 dpi, and high titers of IgM beginning 6 dpi, followed by elevated IgG. 

Similar patterns of viremia to those in naïve-infected animals were reported in a separate 

study by Shepherd et al. (1991) in sheep [n = 3] inoculated SC with SPU 4/81; in that study, 
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viremia was detected 2–6 dpi or 4–7 dpi (50). To test the effects of intermediate CCHFV 

exposure, Wilson et al. used the offspring of a previously exposed sheep; the offspring had 

weak pre-infection IgG as a result of maternal transfer. After experimental infection, this 

offspring developed low viremia 3–6 dpi, weakly elevated IgM beginning 9 dpi, and IgG 

levels that slowly increased over the study period. The sheep that had been previously 

inoculated had high levels of CCHFV IgG prior to re-challenge. Re-challenge resulted in 

undetectable viremia, slightly elevated IgM titers, and persistence of high levels of IgG. 

Notably, despite the absence of detectable viremia in sheep with previous infection, CCHFV 

was transmitted to 11% (n = 18) of female ticks feeding on these sheep (52).

4.3. Equids

4.3.1. Former Soviet Union—The role of equids in maintenance and transmission of 

CCHFV is not well described, but serological data support natural exposure to virus (2). 

Experimental infection studies were performed in both horses and donkeys to investigate the 

possibility of producing antibodies for putative antibody-based human therapeutics. Milyutin 

et al. (1969) infected two 3-year-old mares IV and IM, or IM and SC, with CCHFV strain 

Sudarkina. Hyperthermia as high as 40.3°C, somnolence, and weakness were observed at 1–

2 dpi, before the animals’ condition normalized (44). Increased erythrocyte sedimentation 

rate, indicating non-specific inflammation, and an insignificant leukocytosis were observed. 

No infectious virus could be detected in blood or urine at 2 dpi or at any later time points 

investigated (3–7, 9, 11, 13, 15, and 20 dpi). Modest serological response was detected by 

AGDP, with titers up to 1:32 in the CF assay (44).

Based on concerns about anaphylactic reactions in humans to antibodies produced from 

horse blood sera, Rabinovich et al. (1972) subsequently investigated anti-CCHFV antibody 

production for therapeutic use in donkeys via experimental infection (53). Two donkeys (4 

and 5 years old) were inoculated SC with 9.5 × 108 LD50 of CCHFV (strain not reported). 

Animals were observed for 10 dpi, and no changes in temperature or blood analysis 

parameters were detected. Low-level viremia was observed 4, 6, and 7 dpi, indicated by 

“some” disease in NWM (titer was not reported). CF detected anti-CCHFV antibodies in the 

donkeys at 8 and 13 dpi. Antibody titers increased after a second inoculation of the donkeys 

15 days after the primary inoculation. Neutralizing activity of the serum from donkeys was 

comparable to the activity observed in sera from inoculated horses, but the report does not 

make clear whether the donkey sera were collected after the initial or the secondary 

inoculation. No precipitating antibodies were detected (53). Smirnova (1979) inoculated 

donkeys with several CCHFV strains (48). As described for other animals tested (Section 

4.1.1, 4.2.1), donkeys developed antibodies detectable by precipitation and CF, and viremia 

was seen 2 to 5–7 dpi (viremic period reported collectively for all species tested).

5. Experimental infection in birds

The role of birds is the least well-understood aspect of CCHFV maintenance and 

transmission. Despite extensive investigations, the absence of serological evidence of 

CCHFV-specific antibodies in most avian species sampled suggests that most birds are 

predominantly refractory to CCHFV infection. However, resistance is not uniform, as there 
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is serological evidence of exposure in some species (2). In the original outbreak in Crimea in 

1944, Grobov collected immature H. marginatum ticks from wild birds and domestic fowl, 

considering birds as the putative reservoir of the then-unknown infectious agent (54). Birds 

were suspected as important in virus maintenance due to their extremely high tick infestation 

rates and infestation indexes (calculated as the [no. ticks/no. infested animals] × [% of 

infected animals]). The infestation index of immature H. marginatum in eight species of 

ground-feeding birds in the Volga River delta (collected 1963–1964) ranged 3.3–68.9 (55). 

The highest infestation index was in rooks (Corvus frugilegus); hundreds of H. marginatum 
have been noted to feed on a single rook in CCHFV-endemic regions (56). Indeed, CCHF 

cases in the Volga River floodplains and delta (Astrakhan and Rostov Oblasts) 

epidemiologically linked birds, specifically tree-roosting C. frugilegus hosting immature H. 
marginatum ticks near cattle pastures, to disease occurrence (1). In addition, virus has been 

isolated from ticks feeding on birds (57).

Overall, reports to date show that birds may be important tick blood meal hosts implicated in 

wide-range transportation of tick reservoirs, but very rarely in CCHFV amplification (Table 

3). The absence of detectable viremia was reported in experimental studies of both wild and 

domestic avian species, with ostriches as a notable exception, emphasizing the importance of 

not overgeneralizing CCHFV infection dynamics in animal taxa. Ostriches can host a variety 

of tick species involved in CCHFV transmission (1), develop detectable and sustained 

viremia, and have been epidemiologically associated with human infection (58).

Birds that do not develop viremia likely play a role in the introduction of infected ticks into 

new territories by carrying feeding immatures that were transovarially infected from adult 

ticks. The role of birds in CCHFV maintenance and transmission may be more extensive. 

Anti-CCHFV antibody production has been reported independently of detectable viremia, 

and in addition to ostriches, persistent anti-CCHFV antibodies were detected in a red-beaked 

hornbill (Tockus sp.) and glossy starling (Lamprotornis sp.). Furthermore, while viremia 

may have been missed due to assay sensitivity or timing issues, studies have shown that 

CCHFV or tick-borne encephalitis virus can be transmitted from one co-feeding tick to the 

next in the absence of detectable viremia in the host (9,59,60). The concept of threshold 

viremia therefore might not apply to tick-borne viruses and might not be the hallmark 

feature for identifying hosts involved in CCHFV maintenance.

5.1. Former Soviet Union

The earliest reported experimental investigations into the role of birds were performed by 

Berezin et al. (1969 – 1971), but never published (as described in [1]). Rooks (C. frugilegus) 

and rock doves (Columba livia) were experimentally inoculated with CCHFV. No clinical 

signs were observed, no virus was isolated, and no serological evidence of viremia was 

found (data reviewed in [61–63]).

5.2. Africa

In later investigations to assess viral pathogenicity in wild birds, Shepherd et al. (1987) 

inoculated six adult and 20 3-week-old blue-helmeted guinea fowl (Numida meleagris) with 

strain SPU 4/81, and measured viremia and antibody responses (64). Adult guinea fowl were 
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inoculated SC, IM, and IV (1.5 × 107 LD50 total); 3-week-old guinea fowl were inoculated 

IM and SC (5 × 106 LD50 total). Viremia was assessed 1–9 dpi, and was detected only 

intermittently in a small subset of the adult and 3-week-old animals (0–20% of the birds 

tested per day). Most of the young birds were refractory to infection based on antibody 

assessment: antibodies were detected in 8 of 20 serum samples taken 7–21 dpi, and in 5 of 

16 birds bled on day 28. Antibodies were detected by IF in adult birds starting 5 dpi, and by 

RPHI on day 6 after infection; maximum titers were observed 8 and 9 dpi, and RPHI and IF 

antibody titers dropped to undetectable levels by 49 dpi in most of the experimentally 

infected guinea fowl. These studies highlighted the transient nature of the antibody response 

in birds, and by using a variety of techniques (immunodiffusion, RPHI, and IF) to detect 

antibodies, they demonstrated that the immunodiffusion test is unsuitable for use in 

serological surveys to detect CCHFV antibodies in birds (64–66).

Zeller et al. (1994) experimentally inoculated laughing doves (Spilopelia senegalensis; n = 

2), a red-beaked hornbill (Tockus sp.; n = 1), and a glossy starling (Lamprotornis sp.; n = 1) 

IP with strain HD 49199 (3.2 × 101–3.2 × 103 LD50) (67). Viremia was not detected in any 

of the birds from 2–10 dpi, though the glossy starling was not tested. Antibodies to CCHFV 

were not detected in the laughing doves, but a significant antibody response was seen in the 

red-beaked hornbill and the glossy starling despite the absence of detectable viremia. Anti-

CCHFV antibodies were still detectable in these birds 4 months later (67). This suggests that 

the existing assays were unable to detect viremia in these species, that viremia was acutely 

transient, or that antibody development may occur in the absence of detectable viremia.

The embryonated chicken egg has been successfully infected and used for propagation of 

CCHFV (68); experimentally infected chickens (Gallus gallus domesticus) do not appear 

susceptible to infection. In parallel to inoculations in guinea fowl (see above), Shepherd et 
al. (1987) inoculated 6 adult chickens, detecting no viremia and no antibodies by RPHI test 

in sera collected up to 28 dpi (64). Zeller et al. (1994) inoculated 6 chickens IP with a series 

of challenge doses of CCHFV strain HD 49199 (3.2 × 103 LD50, n = 4; 3.2 × 102 LD50, n = 

1; 3.2 × 101 LD50, n = 1). Again, viremia was not detected in any of the animals 2–10 dpi, 

and antibody-capture ELISA detected no anti-CCHFV antibodies (67).

While chickens appear refractory to infection, studies by Swanepoel et al. (1998), following 

an outbreak of CCHF in workers on an ostrich farm (58), reported viremia 1–4 dpi 

(maximum at 2 dpi) in experimentally infected ostriches. Anti-CCHFV antibodies were 

detected by compliment ELISA in 1 of 9 ostriches at 5 dpi, and by 13 dpi all animals had 

seroconverted. CCHFV was detected in spleen, liver, and kidneys up to 5 dpi, 1 day after it 

was no longer detectable in blood. No infective virus was detected in muscle samples, but 

viral RNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) in 

muscle from an ostrich sacrificed on day 3 pi (69).

6. Experimental vector transmission studies

CCHFV is only transiently associated with the vertebrate host but persists in ticks; mammals 

remain viremic for no more than a few weeks (usually ~ 1 week), but ticks undergo life-long 

infection. As a result, ticks are considered the vector and the long-term reservoir for the 
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virus in nature (1,70–72). Inoculation route may affect resultant viremia; ID inoculation, 

which most closely mirrors tick transmission, resulted in highest viremia levels in hares 

(35). In addition, characteristics of the vector may influence transmission efficiency. 

Compared to mosquitoes, ticks feed for a long period of time and need to immunomodulate 

the bite site using biologically active molecules secreted in tick saliva. Tick-borne pathogens 

have been known to exploit these mechanisms. Certain molecules in arthropod saliva have 

been shown to promote pathogen transmission to the vertebrate host, a phenomenon termed 

saliva-assisted transmission (SAT). SAT is well documented in transmission of several tick-

borne pathogens (73–75), but has only been demonstrated in two CCHFV studies (67,76). 

SAT factors appear to differ among tick vector species, and might depend on the vertebrate 

host species on which the tick feeds, indicating the need for the right tick-host pairing in 

experimental studies. Additionally, SAT can lead to higher viremia levels in infected animals 

than produced by traditional inoculation, further emphasizing the importance of using true 

vector transmission in experiments in addition to traditional needle inoculation. Elucidating 

the properties of circulation and preservation of CCHFV in its natural foci and the 

possibility of transstadial and transovarial transmission in ticks was prioritized in early 

experimental studies. Several studies have investigated CCHFV infection via tick inoculum 

and virus transmission to ticks from inoculated animals.

6.1. Transmission from ticks to vertebrates

Transmission of CCHFV from infected ticks to mammals was investigated in cattle, sheep, 

and guinea pigs. Initial reports of tick transmission by Lee and Kemp were based on limited 

experimental infection studies in calves. Susceptible 6-month-old (~100 kg) White Fulani 

calves (n = 2) were inoculated using adult H. rufipes ticks that were infected with strain 

IbAn 7620 as nymphs (77). The inoculation process was noted to cause trauma to the ticks; 

considerable seepage of body fluid and inoculum from the puncture sites was observed, and 

it was unknown what amount of virus suspension was actually administered, or to what 

tissue sites. Although testing subsets of the ticks indicated low infection success, 11 of the 

inoculated ticks were placed on one calf and left to feed for 14 days; viremia was detected in 

the calf on days 2 and 7 post exposure. In addition, progeny of one female tick that fed on 

this calf contained viable CCHFV, supporting vertical CCHFV transmission in ticks. The 

second calf was subsequently used to examine transmission from larvae of an adult female 

tick that had fed on the first calf. This female tick was allowed to feed on a rabbit and molt 

before being placed onto the second calf, which did not develop viremia. However, while 

virus was detected in larvae from the infected female tick, virus was not confirmed in any of 

the nymphs tested, so little can be concluded from the absence of viremia in the second calf 

(77).

Shepherd et al. (1989) intracoelomically infected groups of adult H. rufipes, H. truncatum, 

and Rhipicephalus evertsi mimeticus with strain SPU 4/81, and allowed the ticks to feed on 

susceptible sheep 56–97 days later. CCHFV was successfully transmitted to the sheep (51). 

Later, four pools of larvae from each of the above species of infected ticks above were 

allowed to feed on susceptible guinea pigs (51), and 1,357 larvae were subsequently 

removed from the guinea pigs. Virus was not isolated from the larvae, and anti-CCHFV 

antibodies were not detected in the sera of guinea pigs collected 21 dpi. Although 
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transstadial and transovarial transmission have been reported for these species (H. rufipes 
[77]; H. truncatum [51,52]; R. evertsi mimeticus [51]), the lack of virus in the larvae 

suggests that transovarial transmission did not occur in these studies and the larvae used 

were likely not infected, thus prohibiting assessment of CCHFV transmission by ticks to the 

guinea pigs in this report. Tick transmission may not be well modeled via experimental 

(intracoelomical) infection, as artificial infection did not lead to detectable infection in 

progeny, whereas natural infection (i.e., by allowing ticks to feed on infected vertebrates) in 

studies described below do (see 6.2). This supports the influence of tick host factors on 

transmission that is not modeled by some experimental approaches.

While not demonstrated by Shepherd et al. (51), transmission from ticks to guinea pigs does 

occur. This was shown in earlier studies by Berezin et al. (1971), who investigated CCHFV 

persistence in H. marginatum ticks at 4°C (78). Ticks maintained for 7–9 months at low 

temperatures were able to transmit CCHFV to guinea pigs; the hosts developed viremia 11 

and 12 days post attachment, and antibodies were detected in surviving animals 21 days 

following tick bites, further supporting long-term CCHFV persistence in the tick vector. 

Notably, in these animals the infection course was described as severe and frequently fatal 

(78), whereas clinical signs have not been reported in other studies of experimental infection 

of guinea pigs (48). Thus, transmission via natural tick vector rather than by needle 

inoculation may produce more severe illness; experimental infection by tick transmission 

should therefore be considered in CCHFV studies.

6.2. Transmission from vertebrates to ticks

Experimental transmission from inoculated animals to ticks has been demonstrated in a 

variety of species: cattle, sheep, susliks (S. pygmaeus), long-eared hedgehogs (H. auritus), 

hares (L. saxatilis), and laboratory rabbits. Causey et al. (1970; see Section 4.1) investigated 

CCHFV transmission from cattle to ticks by placing H. rufipes ticks on two calves that were 

inoculated with IbAn 7620 five days after tick placement. One of the calves developed a 

local purulent reaction at the feeding site. The second calf supported the tick infestation 

well: tick feeding was observed 1 day prior to inoculation. A single engorged female 

dropped off 11 dpi, oviposited 4 days later, and was positive for CCHFV 18 days after 

dropping (24 days after viremia was last detected in the calf). Virus was not detected in the 

resulting larvae tested 27 days after oviposition (49).

Early investigations suspected the prominent role of ticks as the CCHFV reservoir, and 

animals were often used in experimental studies for understanding CCHFV maintenance in 

the tick while tangentially providing data on transmission from animals. Zgurskaya et al. 
(1971) were interested in interepidemic virus survival via transovarial and transstadial 

transmission in ticks (34). European hares (L. europaeus) and long-eared hedgehogs (H. 
auritus), inoculated IV and IM, were found to be susceptible to experimental CCHFV 

infection and were used as CCHFV infection sources for H. marginatum ticks (See Sections 

3.1.1. and 3.3.1.). Virus was detected in nymphs collected from both L. europaeus and H. 
auritus, and from adult ticks that molted from nymphs, confirming transmission from 

animals to ticks and transstadial transmission in H. marginatum ticks. The group went on to 

use animals to confirm that H. marginatum can preserve CCHFV following artificial 
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overwintering conditions (45 days at 4°C) for 13 months, and to demonstrate transovarial 

transmission by confirming infection (confirmed by antibody detection) via transmission in 

guinea pigs and rabbits (34). Blagoveshchenskaya et al. (1975) also investigated 

transmission from infected hedgehog to ticks (38). After confirming hedgehog susceptibility 

to CCHFV (see Section 3), they demonstrated that the virus could be transmitted from H. 
auritus to H. marginatum ticks, but not to Rhipicephalus rossicus or D. marginatus ticks 

(38).

Later studies by Zgurskaya et al. (1975) investigated threshold levels of CCHFV for 

infecting H. marginatum by allowing ticks to feed on infected lagomorphs (hares, rabbits) 

(79). Animals were inoculated IV and IM with CCHFV (strain not reported). Viremia was 

determined in the animals and related to infection in associated blood-fed ticks. Threshold 

levels for CCHFV transmission from the lagomorphs to the ticks were estimated to be 2.5 × 

104–2.0 × 105 LD50/mL; animals that developed this range of viremia (n = 3) transmitted 

CCHFV to ticks, while no transmission was observed from animals (n = 2) with a viremia of 

6.3 × 103–2.5 × 104 LD50/mL. These studies were limited to lagomorphs and investigated 

few animals and ticks, but highlight an important principle in maintenance and transmission 

that warrants additional investigation.

Zarubinsky et al. (1976) placed laboratory-reared H. rufipes, R. rossicus, and D. marginatus 
ticks on 2 experimentally infected 6-month-old calves 24 h after the calves were infected 

with CCHFV. No ticks became infected from feeding, but no viremia was detected in the 

calves, prohibiting any conclusions to be drawn from these investigations (46). However, a 

subsequent study of ticks that fed on viremic cattle infected with strain SPU 4/81 (50) 

confirmed transmission of CCHFV to adult ticks of five species (H. truncatum, 

Rhipicephalus appendiculatus, R. e. evertsi, R. decoloratus, and Amblyomma hebraeum); 

transmission to H. rufipes was not detected.

Additional transmission studies in livestock by Wilson et al. (1991) demonstrated that sheep 

may serve as amplification hosts for CCHFV, and that their relative involvement is 

influenced by prior exposure status. Female West African Peul-Peul sheep (n = 4) were 

infested with 30 male and 30 female H. truncatum ticks 2 days prior to CCHFV inoculation. 

Three sheep were then inoculated IP with 3.2 × 105 LD50 of CCHFV strain Dak H49199, 

and 1 sheep was used as an uninfected control. Beginning at 4 dpi, ticks were examined 

daily; engorged females that had naturally finished feeding were removed, and male ticks 

were detached by forceps at 16 dpi. Virus was detected in at least one tick that fed on each of 

the three inoculated sheep. Higher viremia corresponded to lower levels of previous 

exposure of the sheep to CCHFV and to lower levels of previously acquired anti-CCHFV 

antibodies. Virus was detected in 11% of the female and 0% of the male ticks collected from 

the previously exposed sheep with undetectable viremia (previously described in 4.2.2); in 

14% of the female and 30% of the male ticks from the weakly viremic offspring of a 

previously exposed sheep; and in 33% of the female and 60% of the male ticks from 

strongly viremic sheep infected for the first time. Time of detectable viremia in the sheep 

corresponded to the time during which infected female ticks were detaching. Transovarial 

transmission was detected in two of 12 (17%) of egg batches from infected female ticks 

(52).
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In a study by Shepherd et al. (1991), three sheep inoculated SC with a different human 

isolate (strain SPU 4/81) were fed on by adult H. truncatum (as in the previous study), A. 
hebraeum, H. rufipes, R. e. evertsi, R. appendiculatus, and Rhipicephalus simus ticks, and by 

larval or nymphal A. hebraeum, R. e. evertsi, and R. simus ticks. Four hundred and forty-

three pools of ticks were tested (adults; immatures; females after oviposition, and larvae 

from these eggs; and adults that had molted from engorged immatures); none yielded 

CCHFV despite detectable viremia (3.2 × 102 –1.6 × 103 LD50/mL) in the sheep (50).

Shepherd et al. (1991) conducted additional transmission studies in small mammals; no 

CCHFV was isolated from engorged larvae of A. hebraeum, H. truncatum, or R. e. 
mimeticus that dropped off infected white rats (M. albicaudatus), nor from nymphs or adults 

of these species tested after molting (50). Similarly, no CCHFV was isolated from engorged 

A. hebraeum, H. truncatum, or R. e. mimeticus larvae that fed on three infected Duncan-

Hartley guinea pigs, nor in A. hebraeum or H. truncatum nymphs tested after molting (50). 

These studies suggest that the tick-host interaction is complex, and only certain 

combinations of hosts and ticks support CCHFV transmission.

6.3. Tick-borne transmission from vertebrate to vertebrate

In 1970–1971, Levi and Vasilenko investigated circulation and maintenance of CCHFV in 

the tick vector, finding evidence of transovarial transmission in Hyalomma plumbeum ticks 

and demonstrating the full vertebrate-tick-vertebrate transmission cycle. Ticks were fed on 

Belgian giant breed rabbits (Oryctolagus cuniculus) inoculated IV with CCHFV-infected 

plasma of living animals and high-titer liver suspensions, defined as ~3.2 × 104–3.2 × 105 

LD50 (the CCHFV strain and animal sources of plasma and liver suspensions were not 

reported). After 10 days (for adults) or 20 days (for larvae or nymphs) of feeding, the ticks 

were collected and tested immediately or in later stages of development. CCHFV was 

detected in all fed ticks and their offspring, confirming transstadial and transovarial 

transmission. Additionally, transovarially infected nymphs were placed on uninfected naïve 

rabbits that subsequently developed AGDP-detectable antibodies to CCHFV, with antibody 

titers positively correlating with infected tick burden (80).

In 1976, Kondratenko et al. investigated the importance of ixodid ticks in CCHFV 

transmission and maintenance by feeding 50–500 ticks (H. plumbeum, R. rossicus, or D. 
marginatus) on each of six susliks (S. pygmaeus; 2–3 months old) infected SC with a NWM 

brain suspension of strain Sudarkina (56 passages [81]). Subsets of engorged nymphs were 

tested; others were kept at 22–25°C and 60–80% humidity and allowed to molt to adults. 

Adults were maintained at 4°C, and tested every 1–2 months for CCHFV. Following 

artificial overwintering, adults were fed on 1.5–2 months old naïve susliks (Spermophilus 
sp.) or 6-week-old rabbits to investigate infection transmission to vertebrates and 

transovarial transmission in ticks. Ticks infected with CCHFV, irrespective of the 

developmental stage at feeding, transmitted virus to susliks and rabbits by feeding on them 

within 620 days (observation period) of initial infection.

Transmission between vertebrates via tick vector was later demonstrated in additional 

studies. Shepherd et al. (1991) demonstrated a cycle of hare-tick-sheep virus transmission; 

scrub hares (L. saxatilis) infected with SPU 4/81 transmitted CCHFV to H. truncatum and 
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H. rufipes ticks, and sheep on which these ticks subsequently fed seroconverted (50). 

Notably, Zeller et al. (1994) reported CCHFV transmission from birds to ticks and then 

subsequent transmission from ticks to rabbits (67), despite extensive serological data 

suggesting that birds are refractory to infection (2). Experimental transmission studies 

followed initial experimental infections of birds (Section 5), and were performed using three 

red-beaked hornbills (Tockus sp.), three glossy starling (Lamprotornis sp.), and three 

domestic chickens (G. g. domesticus) by placing H. rufipes larvae on the head of each bird. 

The birds were inoculated with CCHFV at different points after larvae placement: same day 

(1 chicken), 3 days later (2 chickens, 2 hornbills, and 1 starling) to assess CCHFV 

transmission to larvae, or 10 days later (1 chicken and 1 hornbill) to assess transmission to 

nymphs. Virus isolation was performed on engorged nymphs that had dropped off the birds 

and were collected and allowed to molt. Adult ticks derived from some of the molted 

nymphs were then allowed to feed on rabbits. Male and female adult ticks and progeny were 

tested for CCHFV, and rabbits were tested for anti-CCHFV antibodies. Chickens did not 

transmit the virus to H. rufipes larvae or nymphs. Larvae placed on the hornbills and starling 

did not drop off the birds after engorgement, but molted on the host and remained attached 

until the engorged nymph stage (≥ 2 weeks duration). Two of the hornbills died 14 dpi, 

likely due to heavy tick infestation (> 150 nymphs). Nymphs were collected from the 

cadavers and virus was isolated from all 17 pools of 10 nymphs each. Anti-CCHFV 

antibodies were detected in one hornbill and the starling. The adult ticks emerging from 

molted nymphs derived from the hornbills and starling transmitted CCHFV to rabbits, 

inducing a detectable antibody response (67).

Transmissions from ticks to vertebrates and from vertebrates to ticks, as well as a full 

vertebrate-tick-vertebrate transmission cycle, have been recapitulated in experimental 

studies. While results were often variable (e.g., tick transmission to 1 of 2 calves or sheep 

tested), these studies provide important proof of principle for the widely accepted viral 

enzootic cycle in nature, and challenge evidence suggesting a limited role of birds as 

susceptible hosts in CCHFV maintenance. Importantly, these limited data also suggest 

potential limitations of using traditional lab species in transmission studies, as rats and 

guinea pigs did not transmit virus to ticks in the laboratory setting.

7. What we have learned

Nearly 40 years after the publication of Hoogstraal’s landmark monograph (1), many aspects 

of the complex relationship between CCHFV, mammalian hosts, and tick vectors still need 

to be elucidated. Clearly understanding the transmission and maintenance cycle of CCHFV 

is not a simple task, as CCHFV is widely disseminated, with a multitude of vertebrate and 

arthropod species involved. Importantly, however, we do broadly understand the major 

ecological contributors to CCHFV maintenance and transmission necessary for general 

public health education, clinical awareness, and intervention strategy development (e.g., 

acaricide use).

Similar to interpretation of serological studies, where serology does not seem to adequately 

correlate with viremia or with the ability of the seropositive animal to infect feeding ticks, 

experimental infection data must not be over-interpreted. Limited data from experimental 
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infections, without considering the full spectrum of ecological contributors like tick-host 

dynamics, may not accurately reflect relative roles of the tested animal in a natural 

transmission setting.

Despite limitations, experimental animal studies have been critical in providing CCHFV 

data to complement the numerous serological studies performed in animals, and provide key 

insights into all aspects of the hypothesized CCHFV transmission cycle. Most mammals 

appear susceptible to infection, as indicated by detection of anti-CCHFV antibodies and/or 

viremia. However, despite CCHFV isolation from mammalian species, a prominent role for 

mammals as long-term reservoirs of CCHFV is not supported due to brief and transient 

viremia. This is further supported by the limited reports of virus isolation from mammals 

compared to isolation from ticks. As such, these studies support ticks as reservoirs for viral 

persistence in nature, with vertebrates providing a necessary blood meal for the ticks and 

serving as potential amplification hosts.

8. What we still do not know

The current knowledge of major ecological contributors to maintenance and transmission of 

CCHFV is necessary for ongoing interventions, but not sufficient. Similar to many other 

zoonotic agents, CCHFV causes little or no disease in its livestock hosts, and thus is not 

typically a disease of veterinary concern. Nevertheless, CCHFV merits significant veterinary 

consideration, as animal hosts are essential for the tick vectors. Vertebrates have a critical 

role in viral maintenance; moreover, movement or transport of viremic animals, or animals 

bearing infected ticks, can introduce CCHFV into new geographic areas.

Viremia in vertebrates is short-lived, of variable intensity, and notably absent in several 

species tested in the laboratory (e.g., [45,46,50,52]). However, vertebrate-to-tick 

transmission is highly efficient and thus naturally regulated, in part, by the brevity of the 

viremic period in vertebrates. Even if Hyalomma genus tick larvae and nymphs feed 

consecutively on the same host without molting on the ground, the overlap between host 

viremia development and the feeding of ticks in different stages must be finely tuned for 

CCHFV transmission.

A narrow window of viremia may, however, be the origin of an amplification route. Initially 

it was proposed that adults were the only tick stage that overwinters (82). Subsequent studies 

have shown that both adults and developing eggs may overwinter (83). As different 

hibernating tick stages may be activated at different times of the year, the onset of annual 

activity of Hyalomma spp. larvae and nymphs may last for several weeks (83). Each spring, 

the larvae initiate the life cycle by feeding on new hosts after temperatures reach a threshold 

to activate them after hatching. The time of larval feeding to nymphal feeding on the same 

host may last between 20 and 30 days. Therefore, feeding nymphs may overlap on the same 

host with newly attached larvae. If the nymphs are infected and transmit the virus to the 

host, and the host develops viremia, newly acquired larvae could become heavily infected. 

Such a mechanism would require that the first groups of feeding larvae that develop into 

nymphs are transovarially infected, later spreading infection to newly acquired larvae that 

subsequently molt to nymphs. This hypothesis jointly considers the transovarial route of 
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infection of the newly hatched larvae and the amplifying role of the hosts in infecting new 

larvae. The ability of the infected hosts to transmit CCHFV to ticks, and, therefore, the 

number of ticks infected from a single amplification host, is unknown. These data are 

relevant for considering interventions like acaricide treatment and vaccination of livestock. 

Although acaricide treatment of animals, e.g., before or during marketing, is thought the be 

an effective intervention strategy and is linked to decreased seroprevalence (84,85), efficacy 

has not been sufficiently investigated. Ultimately, for these and other putative intervention 

strategies (e.g., anti-tick vaccines (86–88) or anti-CCHFV vaccines [90,91]), proper 

development, evaluation, and implementation would require a more detailed understanding 

of tick-host interactions and viral transmission.

Animals are widely susceptible to CCHFV infection, but susceptibility is not universal 

among all animal species. Specifically, the vast majority of avian species investigated appear 

refractory to infection; serological studies report the absence of CCHFV antibodies in birds, 

and no viremia was detected in almost all experimentally infected avian species. There are 

two notable exceptions: low-level viremia was detected in blue-helmeted guinea fowl (N. 
meleagris) (64), and ostriches developed high-titer viremia and have been associated with 

human CCHFV cases (69). The role of birds in CCHFV maintenance and transmission is far 

from well understood. The existence of cryptic transmission cycles, the exchange of virus 

between two cycles when tick vectors feed on the same host (59,91), needs to be investigated 

in birds. How detectable viremia translates into a role in maintenance and transmission of 

CCHFV is unclear. Arbovirus transmission to ticks from non-viremic birds has been 

reported (92,93), and co-feeding is an efficient source of tick-to-tick transmission that is 

independent of detectable viremia in the host; this is a consideration for birds and all 

vertebrate hosts.

Considering the relatively low numbers of feeding immature ticks that birds can transport, 

the contribution of birds as amplification hosts seems to be low. Birds, however, may be a 

very effective method of transporting ticks during migratory flights, and appear to have a 

crucial role in distributing ticks over wide geographic areas (94). Considering the time 

immature ticks spend feeding on birds, birds probably do not directly transport infected ticks 

from an origin in Africa, for example, to a destination in the Mediterranean region. Rather, 

many birds stop multiple times while migrating to feed and rest, thereby transporting the 

ticks to each rest stop, depositing them, and picking up new ones that are then deposited 

farther along the route. While still unproven, this is probably what happens with birds that 

follow the migratory route along the coast of western Africa, resting every few kilometers 

and continually dropping and picking new ticks. To support this, empirical evidence 

indicates that the molecular features of CCHFV found on the western coast of Africa are 

similar to those of the strain found in southwestern Spain, both points along the main 

western pathway followed by many migratory birds from Africa to Europe (95).

The spread of CCHFV from its African ancestor to other areas of the world appears to 

overlap in time with movements of livestock (96). While small- and medium-sized wild 

mammals serve as hosts for large numbers of immature ticks, domestic and wild ruminants 

have the potential to feed large numbers of adults (Figure 2). As a result of the substantial 

tick burdens large vertebrates can support, a large population of infected tick larvae may 
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develop on a single host even if CCHFV transmission efficiency is low. About 500 females 

may simultaneously feed on a single animal, and each female may lay around 5,000 eggs 

(1). The data concerning the efficiency of transovarial infection from the female to the egg is 

unclear, but even with a transovarial transmission efficiency of ~1%, this scenario would 

generate 25,000 infected larvae from only one host that is not a reservoir, but just the food 

source for the females. Undoubtedly, the close proximity in the natural habitats of hosts for 

both immature (i.e., hares) and adult (i.e., ungulates) ticks would result in a self-fueled 

CCHFV prevalence in ticks. As several studies provide evidence of viremia in livestock, the 

overlap of feeding adult ticks on infected hosts could further increase the number of infected 

ticks, but this remains to be demonstrated.

9. Recommendations for future investigations

There are several areas noted throughout this report identifying gaps in knowledge. Here, in 

summary, we highlight some key questions warranting future investigation.

Experimental design and reporting of data

Key ecological questions were investigated in CCHFV experimental studies by experienced 

and innovative researchers in the field, but the data that exist have several weaknesses 

hampering interpretation and comparison. In contrast to seroepidemiological studies, overall, 

data from experimental infections of wild and domestic animals are limited to only a few 

groups and relatively few publications. Common limitations in these studies include: small 

number of animals; variations in inoculum source, passaging, and preparation (Table 4); 

unclear inoculum dosage based on variations in titration techniques; and confounding by 

unrelated disease, as was seen in studies by Shepherd et al. (50). These limitations are 

important to consider in designing future investigations. Transparency in experimental 

design and data, including reporting of negative data and details of the virus inoculum, are of 

notable importance in CCHFV studies. Sequencing the isolate and clearly reporting the virus 

strain, titer techniques, and passage history is critical in future studies. Passaging CCHFV 

isolates in suckling mice, cell culture, or other means (e.g., ticks, vertebrates) can affect 

outcome (97), though the relative influences of virus isolation and passage history on 

experimental outcome are unknown. In addition, early studies were done with virus titrated 

in NWM. Sensitivity of NWM isolation has not been compared to cell culture isolation. 

Studies on these fundamental questions are critically lacking.

Advanced experimental infection studies of wild vertebrates

Future studies should continue to investigate the roles of wild vertebrate hosts in 

amplification and transmission of virus, tick-transmission dynamics, and domestic animal 

infection. Our current knowledge of CCHFV epidemiology has many gaps. The resolution 

of these gaps needs intensive laboratory work in high-security biosafety conditions, and may 

be limited by existing transmission model systems (98). Importantly, animal contact has 

been a direct transmission source of CCHFV to humans. Additional experimental infection 

studies in species with high risk of infection in nature and frequent human interaction (i.e., 

livestock and other domestic species) can be used to assess human risk of exposure and 

disease. Such studies are warranted, and should detail presence or absence of virus in 
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potential sources of infection (e.g., blood, bodily fluids, tissues) by investigating virus 

dissemination in the host and virus shedding. The importance of viral persistence has 

recently been reported in cases of other severe hemorrhagic fever viruses (99,100). 

Investigating viral dissemination and potential persistence in tissues, an area that has never 

been investigated in animals for CCHFV, is also important for more definitive exclusion of 

vertebrates as long-term reservoirs of CCHFV.

Investigation of vector-dependent factors in animal studies

Ideally, future studies would mirror natural infection by tick inoculation. However, much 

work must be done on CCHFV and ticks experimentally to aid study design, and, ultimately, 

understanding the role of vertebrates in the infection cycle of CCHFV. This work includes 

determining vector and reservoir competence, including the efficacy of transovarial infection 

in ticks from infected hosts with detectable viremia, and identifying the contribution of 

threshold viremia in CCHFV transmission. The ideal conditions for investigating tick 

transmission dynamics would include experimentally infecting vertebrates identified in 

CCHFV ecology (e.g., hares), allowing immature ticks to feed on them while viremia is 

detectable, and then allowing the resulting adult ticks to feed on naive livestock or wild deer. 

These investigations would require collaboration between virologists and acarologists; 

resources to maintain tick colonies (e.g., personnel, animals to provide blood meals); access 

to high-containment facilities able to house a variety of species, including large animals; and 

the necessary long-term funding for tick studies. Importantly, this multi-faceted 

experimental approach would provide reliable data on critical aspects of CCHFV 

maintenance and transmission, including the ability of a putative amplification host to 

transmit infective CCHFV to feeding immature ticks. In addition to assessing the ability of 

the infected adult ticks to infect livestock, non-infected ticks can be allowed to feed 

alongside with the putatively infected female ticks, and CCHFV prevalence can be assessed 

in the hatching larvae from both sets of ticks. The potential of infection by co-feeding ticks 

should not be discarded. In any case, the experiments should clarify a pattern regarding the 

ability of infected animals to infect feeding ticks and to confirm transovarial transmission 

under controlled conditions.

Considerations for natural tick ecology

Recognizing the central role of ticks in CCHFV transmission and maintenance, experimental 

infections like those proposed above must be designed with serological and tick ecology 

data in mind, selecting ticks compatible to hosts that can be infected with CCHFV and are 

naturally found in the same habitats. Future studies focused on the interplay between hosts 

and vectors will further our knowledge of viral ecology, and may aid in identifying putative 

intervention strategies to interrupt natural CCHFV transmission cycles. This work can help 

refine interventions and identify high-risk scenarios for high-impact epizootics or virus 

introduction.

This report is one of a series of comprehensive reviews on CCHFV. Further discussion of 

these and additional unanswered questions on CCHFV ecology and disease will be provided 

in future reviews on the role of ticks, and on attempts to model human disease in animals.
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Highlights final version

• This article is part of a series of reviews of historical data on CCHFV.

• Wild and domestic vertebrates infected with CCHFV develop a brief 

viremia, but do not become ill.

• Vertebrates provide blood meals for large numbers of ticks and serve as 

amplifying hosts.

• Viremia is rarely detected in birds, but they may transport CCHFV-

infected ticks across wide areas.

• Future reviews in the series will focus on attempts to model disease in 

animals and the role of ticks in virus ecology.
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Figure 1. 
Life cycle of Hyalomma spp. ticks and vertical and horizontal transmission of Crimean-

Congo hemorrhagic fever virus (CCHFV) (3). The course of the tick life cycle is indicated 

with blue arrows. Upon hatching, larvae find a small animal host for their first blood meal 

(hematophagy). Depending on the tick species, the larvae either remain attached to their host 

following engorgement and molt in place (two-host ticks) or drop off to molt (three-host 

ticks); this transition is marked by an asterisk. The nymphs then either continue to feed on 

the animal on which they molted (two-host ticks) or attach to a new small vertebrate host 

(three-host ticks). Upon engorgement, nymphs of all species drop off their host and molt into 

adults. Adult ticks then find a large animal for hematophagy, and mate while attached to the 

host. After taking a blood meal, the engorged females drop off and find a suitable location 

for ovipositing. During the tick life cycle, CCHFV can be transmitted between ticks and 

mammals (solid red arrows), and directly between ticks through co-feeding (dashed arrows). 

For each kind of virus transfer, the thickness of the arrow indicates the efficiency of 

transmission. Humans can become infected through the bite of an infected tick or through 

exposure to the body fluids of a viremic animal or an infected person.
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Figure 2. 
Idealized life cycle of an Ixodes spp. tick with three hosts, showing the three stages (larva, 

nymph, and adult) (16). The eggs incubate in ground litter (A), protected against stressful 

environmental conditions (e.g., water losses). When the larvae hatch, they climb the 

vegetation, questing for a host (A→B). Larvae feed on such hosts (B), and when engorged, 

drop off to the ground and molt to nymphs (B→C). The nymphs quest for a second host, 

feed, and molt again off the host (C→D). The resulting adults attach to a third host, feed, 

and mate, and the females drop off for ovipositing on the ground.

Spengler et al. Page 30

Antiviral Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 31

Ta
b

le
 1

C
C

H
F

V
 e

xp
er

im
en

ta
l i

nf
ec

ti
on

 in
 s

m
al

l m
am

m
al

s

N
on

e 
of

 th
e 

st
ud

ie
s 

re
po

rt
ed

 c
lin

ic
al

 s
ig

ns
 in

 in
oc

ul
at

ed
 a

ni
m

al
s.

 L
D

50
 w

er
e 

de
te

rm
in

ed
 b

y 
in

tr
ac

ra
ni

al
 in

oc
ul

at
io

n 
of

 n
ew

bo
rn

 w
hi

te
 m

ic
e 

(N
W

M
).

C
om

m
on

 n
am

e
Ta

xo
no

m
ic

 n
am

e 
(c

la
ss

/o
rd

er
)

V
ir

us
 s

tr
ai

n
R

ou
te

/D
os

e
V

ir
em

ia
A

nt
ib

od
y 

re
sp

on
se

Y
ea

r
R

ef
.

E
ur

op
ea

n 
he

dg
eh

og
E

ri
na

ce
us

 e
ur

op
ae

us
 (

M
am

m
al

ia
/E

ri
na

ce
om

or
ph

a)
Su

da
rk

in
a

SC
, 1

 ×
 1

07 –
1 

×
 

10
8  

L
D

50

N
o 

vi
re

m
ia

 d
et

ec
te

d 
(5

–
13

 d
pi

)
N

o 
(C

F 
or

 A
G

PD
, 

up
 to

 1
 m

on
th

)
19

75
(3

8)

L
on

g-
ea

re
d 

he
dg

eh
og

H
em

ie
ch

in
us

 a
ur

itu
s 

(M
am

m
al

ia
/E

ri
na

ce
om

or
ph

a)
Su

da
rk

in
a

SC
, 1

 ×
 1

07 –
1 

×
 

10
8  

L
D

50

V
ir

em
ia

, 2
–6

 d
pi

 (
m

ax
 

4–
6 

dp
i)

N
o 

(C
F 

or
 A

G
PD

, 
up

 to
 1

 m
on

th
)

19
75

(3
8)

L
on

g-
ea

re
d 

he
dg

eh
og

H
em

ie
ch

in
us

 a
ur

itu
s 

(M
am

m
al

ia
/E

ri
na

ce
om

or
ph

a)
N

R
IV

/I
M

V
ir

em
ia

 (
de

ta
ils

 N
R

)
N

R
19

71
(3

4)

So
ut

h 
A

fr
ic

an
 h

ed
ge

ho
g

A
te

le
ri

x 
fr

on
ta

lis
 (

M
am

m
al

ia
/E

ri
na

ce
om

or
ph

a)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

N
o 

vi
re

m
ia

 d
et

ec
te

d
Y

es
19

89
(3

6)

E
ur

op
ea

n 
ha

re
L

ep
us

 e
ur

op
ae

us
 (

M
am

m
al

ia
/L

ag
om

or
ph

a)
Su

da
rk

in
a

In
tr

ac
ar

di
ac

, 
SC

, o
r 

ID
 (

n 
=

 
2,

 e
ac

h)
, 1

 ×
 

10
5  

L
D

50

In
tr

ac
ar

di
ac

 in
oc

ul
at

io
n:

 
vi

re
m

ia
 d

et
ec

te
d 

at
 2

, 4
, 

5,
 a

nd
 9

 d
pi

 (
bu

t n
ot

 6
, 

7,
 8

 d
pi

);
 S

C
 

in
oc

ul
at

io
n:

 v
ir

em
ia

 a
t 

1,
 2

, a
nd

 5
 d

pi
; I

D
 

in
oc

ul
at

io
n:

 a
t 1

–1
0 

dp
i

Y
es

, C
F 

an
tib

od
y 

at
 

7 
dp

i; 
hi

gh
 C

F 
A

b 
tit

er
s 

de
te

ct
ab

le
 2

8–
45

 d
pi

 (
st

ud
y 

pe
ri

od
)

19
72

(3
5)

E
ur

op
ea

n 
ha

re
L

ep
us

 e
ur

op
ae

us
 (

M
am

m
al

ia
/L

ag
om

or
ph

a)
N

R
IV

/I
M

, 1
 ×

 1
010

 

L
D

50

V
ir

em
ia

 u
p 

to
 1

5 
dp

i 
(m

ax
 o

f 
(m

ax
 o

f 
2 

×
 1

05 

L
D

50
/m

L
 a

t 4
 d

pi
)

N
R

19
71

(3
4)

H
ar

e
L

ep
us

 s
p.

 (
M

am
m

al
ia

/L
ag

om
or

ph
a)

N
R

IV
/I

M
V

ir
em

ia
 (

7.
9 

×
 1

04 –
2.

0 
×

 1
05  

L
D

50
/m

L
 a

t 4
–6

 
dp

i)

N
R

19
75

(7
9)

Sc
ru

b 
ha

re
L

ep
us

 s
ax

at
ili

s 
(M

am
m

al
ia

/L
ag

om
or

ph
a)

SP
U

 4
/8

1
SC

, 1
 ×

 1
06 –

2.
5 

×
 1

06  
L

D
50

V
ir

em
ia

, 1
–7

 d
pi

 (
m

ax
 

1.
6 

×
 1

04  
L

D
50

/m
L

)
Y

es
19

89
(3

6)

B
us

hv
el

d 
ge

rb
il

G
er

bi
lli

sc
us

 le
uc

og
as

te
r (

M
am

m
al

ia
/R

od
en

tia
)

SP
U

 4
/8

1
SC

, 1
 ×

 1
06 –

2.
5 

×
 1

06  
L

D
50

V
ir

em
ia

, 1
–7

 d
pi

 (
m

ax
 5

 
×

 1
02  

L
D

50
/m

L
)

Y
es

19
89

(3
6)

G
ro

un
d 

sq
ui

rr
el

 (
lit

tle
 s

us
lik

)
Sp

er
m

op
hi

lu
s 

py
gm

ae
us

 (
M

am
m

al
ia

/R
od

en
tia

)
Su

da
rk

in
a,

 H
p-

15
 Z

hr
IC

, 4
 ×

 1
04 –

1.
3 

×
 1

05  
L

D
50

; o
r 

IM
/S

C
, 5

 ×
 

10
5 –

1.
6 

×
 1

06 

L
D

50

V
ir

us
 is

ol
at

ed
 f

ro
m

 
bl

oo
d 

an
d 

or
ga

ns
 o

f 
al

l 
an

im
al

s 
2–

7 
dp

i (
bu

t n
ot

 
la

te
r)

N
R

19
72

(3
7)

C
ap

e 
gr

ou
nd

 s
qu

ir
re

l
X

er
us

 in
au

ri
s 

(M
am

m
al

ia
/R

od
en

tia
)

SP
U

 4
/8

1
SC

, 1
 ×

 1
06 –

2.
5 

×
 1

06  
L

D
50

V
ir

em
ia

 2
–8

 d
pi

 (
m

ax
 5

 
×

 1
02  

L
D

50
/m

L
)

Y
es

19
89

(3
6)

H
ig

hv
el

d 
ge

rb
il

G
er

bi
lli

sc
us

 b
ra

nt
si

i (
M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

N
o 

vi
re

m
ia

Y
es

19
89

(3
6)

Antiviral Res. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 32

C
om

m
on

 n
am

e
Ta

xo
no

m
ic

 n
am

e 
(c

la
ss

/o
rd

er
)

V
ir

us
 s

tr
ai

n
R

ou
te

/D
os

e
V

ir
em

ia
A

nt
ib

od
y 

re
sp

on
se

Y
ea

r
R

ef
.

So
ut

he
rn

 m
ul

tim
am

m
at

e 
m

ou
se

M
as

to
m

ys
 c

ou
ch

a 
(M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

N
o 

vi
re

m
ia

Y
es

19
89

(3
6)

M
ul

tim
am

m
at

e 
m

ou
se

M
as

to
m

ys
 n

at
al

en
si

s 
(M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

N
o 

vi
re

m
ia

Y
es

19
89

(3
6)

N
am

aq
ua

 g
er

bi
l

D
es

m
od

ill
us

 a
ur

ic
ul

ar
is

 (
M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

N
R

Y
es

19
89

(3
6)

R
ed

 v
el

d 
ra

t
A

et
ho

m
ys

 c
hr

ys
op

hi
lu

s 
(M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

V
ir

em
ia

, 1
–3

 d
pi

 (
m

ax
 1

 
×

 1
04  

L
D

50
/m

L
)

Y
es

19
89

(3
6)

Fo
ur

-s
tr

ip
ed

 g
ra

ss
 m

ou
se

R
ha

bd
om

ys
 p

um
ili

o 
(M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

V
ir

em
ia

, 1
 d

ay
 d

ur
at

io
n 

(5
 d

pi
),

 3
.2

 ×
 1

01 

L
D

50
/m

L

N
o*

19
89

(3
6)

W
hi

te
-t

ai
le

d 
ra

t
M

ys
tr

om
ys

 a
lb

ic
au

da
tu

s 
(M

am
m

al
ia

/R
od

en
tia

)
SP

U
 4

/8
1

SC
, 1

 ×
 1

06 –
2.

5 
×

 1
06  

L
D

50

V
ir

em
ia

, 1
–6

 d
pi

 (
m

ax
 

5.
0 

×
 1

03  
L

D
50

/m
L

)
Y

es
19

89
(3

6)

A
bb

re
vi

at
io

ns
: A

G
PD

, a
ga

r 
ge

l d
if

fu
si

on
 p

re
ci

pi
ta

tio
n;

 C
F,

 c
om

pl
em

en
t f

ix
at

io
n;

 d
pi

, d
ay

s 
po

st
 in

fe
ct

io
n;

 I
C

, i
nt

ra
cr

an
ia

l; 
ID

, i
nt

ra
de

rm
al

; I
M

, i
nt

ra
m

us
cu

la
r;

 I
P,

 in
tr

ap
er

ito
ne

al
; I

V
, i

nt
ra

ve
no

us
; N

R
, n

ot
 

re
po

rt
ed

; S
C

, s
ub

cu
ta

ne
ou

s.

* C
C

H
FV

 a
nt

ib
od

ie
s 

w
er

e 
no

t d
et

ec
te

d 
in

 a
ni

m
al

s 
eu

th
an

iz
ed

 u
p 

to
 8

 d
pi

.

Antiviral Res. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 33

Ta
b

le
 2

C
C

H
F

V
 e

xp
er

im
en

ta
l i

nf
ec

ti
on

 in
 li

ve
st

oc
k

L
D

50
 is

 in
di

ca
tiv

e 
of

 N
W

M
 in

tr
ac

ra
ni

al
 L

D
50

 le
ve

ls
.

C
om

m
on

 n
am

e
Ta

xo
no

m
ic

 n
am

e
V

ir
us

 s
tr

ai
n

R
ou

te
V

ir
em

ia
C

lin
ic

al
 s

ig
ns

A
nt

ib
od

y 
re

sp
on

se
Y

ea
r

R
ef

.

C
ow

B
os

 ta
ur

us
 (

W
hi

te
 F

ul
an

i)
 (

M
am

m
al

ia
/

A
rt

io
da

ct
yl

a)
Ib

A
n 

76
20

 
(i

so
la

te
d 

fr
om

 
go

at
 in

 th
is

 
st

ud
y)

SC
 (

n 
=

 1
),

 S
C

/I
D

 (
n 

=
 1

)
V

ir
em

ia
 2

 a
nd

 5
 d

pi
 in

 
lo

w
 d

os
e 

in
oc

ul
at

io
n;

 
vi

re
m

ia
 1

–5
 d

pi
 in

 
hi

gh
 d

os
e 

in
oc

ul
at

io
n

Y
es

, m
ild

 
ill

ne
ss

, d
ul

ln
es

s,
 

la
ss

itu
de

, 
de

cr
ea

se
d 

ap
pe

tit
e 

in
 b

ot
h 

an
im

al
s

N
R

19
70

(4
9)

C
ow

 (
ca

lf
) 

(2
 m

o,
 

6 
m

o)
B

os
 ta

ur
us

 (
M

am
m

al
ia

/A
rt

io
da

ct
yl

a)
Su

da
rk

in
a

SC
, I

M
, o

r 
SC

/I
D

V
ir

em
ia

N
o

Y
es

19
76

(4
6)

C
ow

 (
ca

lf
)

B
os

 ta
ur

us
 (

M
am

m
al

ia
/A

rt
io

da
ct

yl
a)

K
12

8-
12

, 3
01

0,
 

N
ak

iw
og

o,
 

K
67

/6
7,

 I
bA

n 
76

20
, J

D
 2

06
, 

Ib
A

r 
10

20
0

IC
 a

nd
/o

r 
pe

ri
ph

er
al

V
ir

em
ia

 (
2 

to
 5

–7
 d

pi
, 

tit
er

 1
.6

 ×
 1

04 –
1.

6 
×

 

10
6  

L
D

50
/m

L
)*

N
R

Y
es

19
79

(4
8)

Sh
ee

p 
(T

ou
ab

ir
 

an
d 

Pe
ul

-P
eu

l 
br

ee
ds

)

O
vi

s 
ar

ie
s 

(M
am

m
al

ia
/A

rt
io

da
ct

yl
a)

H
D

 4
91

99
IP

 o
r 

IT
V

ir
em

ia
 (

ra
ng

e 
0–

9 
dp

i)
Y

es
, f

ev
er

 (
ra

ng
e 

0–
9 

dp
i)

, h
ep

at
ic

 
dy

sf
un

ct
io

n,
 

ab
no

rm
al

 b
lo

od
 

ce
ll 

co
un

t

Y
es

, a
nd

 p
as

si
ve

 
tr

an
sf

er
 to

 o
ff

sp
ri

ng
19

98
(4

5)

Sh
ee

p
O

vi
s 

ar
ie

s 
(M

am
m

al
ia

/A
rt

io
da

ct
yl

a)
SP

U
 4

/8
1

IT
2–

5 
da

y 
du

ra
tio

n 
(m

ax
 

10
3  

L
D

50
/m

L
)

M
ild

 f
ev

er
Y

es
19

89
(5

1)

Sh
ee

p
O

vi
s 

ar
ie

s 
(M

am
m

al
ia

/A
rt

io
da

ct
yl

a)
K

12
8-

12
, 3

01
0,

 
N

ak
iw

og
o,

 
K

67
/6

7,
 I

bA
n 

76
20

, J
D

 2
06

, 
Ib

A
r 

10
20

0

IC
 a

nd
/o

r 
pe

ri
ph

er
al

V
ir

em
ia

 (
da

y 
2 

to
 5

–7
 

dp
i, 

tit
er

 1
.6

 ×
 1

04 –
1.

6 

×
 1

06  
L

D
50

/m
L

)*

N
R

Y
es

19
79

(4
8)

Sh
ee

p 
(P

eu
l-

Pe
ul

 
Fu

la
ni

 b
re

ed
)

O
vi

s 
ar

ie
s 

(M
am

m
al

ia
/A

rt
io

da
ct

yl
a)

D
ak

 H
49

19
9

IP
V

ir
em

ia
 (

0–
6 

da
ys

),
 

co
rr

es
po

nd
in

g 
to

 
pr

ev
io

us
 C

C
H

FV
 

ex
po

su
re

N
R

Y
es

19
91

(5
2)

Sh
ee

p 
(l

am
b)

O
vi

s 
ar

ie
s 

(M
am

m
al

ia
/A

rt
io

da
ct

yl
a)

Su
da

rk
in

a
SC

/I
D

V
ir

em
ia

N
o

Y
es

19
76

(4
6)

D
on

ke
y

E
qu

us
 a

si
nu

s 
(M

am
m

al
ia

/P
er

is
so

da
ct

yl
a)

N
R

SC
V

ir
em

ia
 (

lo
w

 le
ve

l, 
tit

er
 N

R
)

N
o

Y
es

19
72

(5
3)

D
on

ke
y

E
qu

us
 a

si
nu

s 
(M

am
m

al
ia

/P
er

is
so

da
ct

yl
a)

K
12

8-
12

, 3
01

0,
 

N
ak

iw
og

o,
 

K
67

/6
7,

 I
bA

n 
76

20
, J

D
 2

06
, 

Ib
A

r 
10

20
0

IC
 a

nd
/o

r 
pe

ri
ph

er
al

V
ir

em
ia

 (
da

y 
2 

to
 5

–7
 

dp
i, 

tit
er

 1
.4

 ×
 1

04 –
1.

6 

×
 1

06  
L

D
50

)*

N
R

Y
es

19
79

(4
8)

Antiviral Res. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 34

C
om

m
on

 n
am

e
Ta

xo
no

m
ic

 n
am

e
V

ir
us

 s
tr

ai
n

R
ou

te
V

ir
em

ia
C

lin
ic

al
 s

ig
ns

A
nt

ib
od

y 
re

sp
on

se
Y

ea
r

R
ef

.

H
or

se
E

qu
us

 c
ab

al
lu

s 
(M

am
m

al
ia

/P
er

is
so

da
ct

yl
a)

Su
da

rk
in

a
IV

/I
M

 o
r 

IM
/S

C
V

ir
em

ia
 (

lo
w

 le
ve

l, 
tit

er
 N

R
)

N
o†

Y
es

, h
ig

h 
N

A
b

19
69

(4
4)

A
bb

re
vi

at
io

ns
: d

pi
, d

ay
s 

po
st

 in
fe

ct
io

n;
 I

C
, i

nt
ra

cr
an

ia
l; 

ID
, i

nt
ra

de
rm

al
; I

M
, i

nt
ra

m
us

cu
la

r;
 I

P,
 in

tr
ap

er
ito

ne
al

; I
T,

 in
oc

ul
at

ed
 ti

ck
s;

 I
V

, i
nt

ra
ve

no
us

; N
A

b,
 n

eu
tr

al
iz

in
g 

an
tib

od
y;

 N
R

, n
ot

 r
ep

or
te

d;
 S

C
, 

su
bc

ut
an

eo
us

.

† C
lin

ic
al

 s
ig

ns
 a

ss
oc

ia
te

d 
w

ith
 in

oc
ul

um
.

* R
an

ge
 f

or
 a

ll 
sp

ec
ie

s 
w

ith
 d

et
ec

ta
bl

e 
vi

re
m

ia
; t

ite
r 

in
 in

di
vi

du
al

 s
pe

ci
es

 n
ot

 r
ep

or
te

d.

Antiviral Res. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 35

Ta
b

le
 3

C
C

H
F

V
 e

xp
er

im
en

ta
l i

nf
ec

ti
on

 in
 b

ir
ds

R
ep

or
ts

 o
f 

ex
pe

ri
m

en
ta

l i
nf

ec
tio

n 
in

 b
ir

ds
 a

re
 li

m
ite

d 
to

 a
 f

ew
 in

de
pe

nd
en

t i
nv

es
tig

at
io

ns
. V

ir
em

ia
 w

as
 u

nd
et

ec
ta

bl
e 

in
 m

os
t s

pe
ci

es
, w

ith
 th

e 
no

ta
bl

e 

ex
ce

pt
io

ns
 o

f 
gu

in
ea

 f
ow

l a
nd

 o
st

ri
ch

es
. C

lin
ic

al
 s

ig
ns

 w
er

e 
no

t r
ep

or
te

d 
in

 a
ny

 a
ni

m
al

s.

C
om

m
on

 n
am

e
Ta

xo
no

m
ic

 n
am

e
V

ir
us

 s
tr

ai
n

R
ou

te
V

ir
em

ia
A

nt
ib

od
y 

re
sp

on
se

Y
ea

r
R

ef
.

R
ed

-b
ill

ed
 h

or
nb

ill
To

ck
us

 s
p.

 (
A

ve
s/

B
uc

er
ot

if
or

m
es

)
H

D
 4

91
99

IP
N

o 
vi

re
m

ia
 d

et
ec

te
d,

 b
ut

 tr
an

sm
itt

ed
 

vi
ru

s 
to

 n
aï

ve
 ti

ck
s

Y
es

19
94

(6
7)

L
au

gh
in

g 
do

ve
Sp

ilo
pe

lia
 s

en
eg

al
en

si
s 

(A
ve

s/
C

ol
um

bi
fo

rm
es

)
H

D
 4

91
99

IP
N

o 
vi

re
m

ia
N

o
19

94
(6

7)

R
oc

k 
do

ve
C

ol
um

ba
 li

vi
a 

(A
ve

s/
C

ol
um

bi
fo

rm
es

)
N

R
N

R
N

o 
vi

re
m

ia
N

o
19

69
–1

97
2

(6
1–

63
)

C
hi

ck
en

G
al

lu
s 

ga
llu

s 
(A

ve
s/

G
al

lif
or

m
es

)
H

D
 4

91
99

IP
N

o 
vi

re
m

ia
Y

es
 (

in
 1

 o
f 

6 
an

im
al

s)
19

94
(6

7)

C
hi

ck
en

G
al

lu
s 

ga
llu

s 
(A

ve
s/

G
al

lif
or

m
es

)
SP

U
 4

/8
1

SC
/I

M
/I

V
N

o 
vi

re
m

ia
N

o
19

87
(6

4)

B
lu

e-
he

lm
et

ed
 g

ui
ne

a 
fo

w
l

N
um

id
a 

m
el

ea
gr

is
 (

A
ve

s/
G

al
lif

or
m

es
)

SP
U

 4
/8

1
SC

/I
M

/I
V

3-
w

ee
k-

ol
d 

an
d 

ad
ul

t b
ir

ds
 s

im
ila

r, 
lo

w
-l

ev
el

 v
ir

em
ia

 in
 1

0–
20

%
 o

f 
an

im
al

s;
 m

os
t r

ef
ra

ct
or

y

Y
es

, b
eg

in
ni

ng
 5

–6
 d

pi
19

87
(6

4)

G
lo

ss
y 

st
ar

lin
g

L
am

pr
ot

or
ni

s 
sp

. (
A

ve
s/

Pa
ss

er
if

or
m

es
)

H
D

 4
91

99
IP

N
o 

vi
re

m
ia

Y
es

19
94

(6
7)

R
oo

k
C

or
vu

s 
fr

ug
ile

gu
s 

(A
ve

s/
Pa

ss
er

if
or

m
es

)
N

R
N

R
N

o 
vi

re
m

ia
N

o
19

69
–1

97
2

(6
1–

63
)

O
st

ri
ch

St
ru

th
io

 c
am

el
us

 (
A

ve
s/

St
ru

th
io

ni
fo

rm
es

)
SP

U
 4

/8
1

SC
V

ir
em

ia
 1

–4
 d

pi
 (

m
ax

 1
 ×

 1
04 

L
D

50
/m

L
 a

t 2
 d

pi
);

 v
ir

us
 d

et
ec

te
d 

in
 

sp
le

en
, l

iv
er

, k
id

ne
y 

(u
p 

to
 5

 d
pi

)

Y
es

19
98

(6
9)

A
bb

re
vi

at
io

ns
: d

pi
, d

ay
s 

po
st

 in
fe

ct
io

n;
 I

M
, i

nt
ra

m
us

cu
la

r;
 I

P,
 in

tr
ap

er
ito

ne
al

; I
V

, i
nt

ra
ve

no
us

; N
R

, n
ot

 r
ep

or
te

d;
 S

C
, s

ub
cu

ta
ne

ou
s.

Antiviral Res. Author manuscript; available in PMC 2017 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spengler et al. Page 36

Ta
b

le
 4

C
C

H
F

V
 s

tr
ai

ns
 u

se
d 

in
 m

ai
nt

en
an

ce
 a

nd
 t

ra
ns

m
is

si
on

 e
xp

er
im

en
ta

l i
nf

ec
ti

on
 a

ni
m

al
 s

tu
di

es

T
hi

s 
ta

bl
e 

su
m

m
ar

iz
es

 th
e 

va
ri

et
y 

of
 is

ol
at

es
 th

at
 w

er
e 

us
ed

 in
 th

e 
st

ud
ie

s 
de

sc
ri

be
d,

 in
cl

ud
in

g 
C

C
H

FV
 s

tr
ai

ns
 a

nd
 p

as
sa

ge
 h

is
to

ry
. W

he
n 

or
ig

in
al

 

is
ol

at
io

n 
in

fo
rm

at
io

n 
w

as
 n

ot
 r

ep
or

te
d,

 y
ea

r 
of

 is
ol

at
io

n 
is

 li
st

ed
 a

s 
≤ 

th
e 

ye
ar

 in
 w

hi
ch

 th
e 

ea
rl

ie
st

 p
ub

lis
he

d 
re

po
rt

 o
f 

th
e 

is
ol

at
e 

w
as

 f
ou

nd
.

Y
ea

r 
of

 is
ol

at
io

n
R

eg
io

n
St

ra
in

So
ur

ce
 o

f 
is

ol
at

e 
(r

ef
er

en
ce

)
P

as
sa

ge
 h

is
to

ry
R

ef
.

19
56

C
on

go
U

G
 3

01
0

H
um

an
 (

48
,1

02
–1

04
)

SM
B

(4
8)

19
58

U
ga

nd
a

N
ak

iw
og

o
H

um
an

 s
er

um
 (

10
4)

SM
B

(4
8)

19
65

N
ig

er
ia

Ib
A

n 
76

20
G

oa
t (

48
)

3–
4×

 S
M

B
(4

8,
77

)

19
66

So
ko

to
, N

ig
er

ia
Ib

A
r 

10
20

0
H

ya
lo

m
m

a 
ex

ca
va

tu
m

 ti
ck

 c
ol

le
ct

ed
 f

ro
m

 c
am

el
 (

49
)

SM
B

(4
8)

19
67

U
zb

ek
 S

SR
K

ho
dz

ha
 (

H
od

zh
a)

H
um

an
 (

10
5)

29
×

 o
r 

41
×

 S
M

B
(4

8)
(1

05
)

19
68

R
os

to
v 

O
bl

as
t

Su
da

rk
in

a
H

um
an

 (
37

,4
4)

16
×

 S
M

B
(4

4)

19
68

R
os

to
v 

O
bl

as
t

Su
da

rk
in

a
H

um
an

 (
37

,4
4)

21
–4

8×
 S

M
B

(3
7)

19
68

R
os

to
v 

O
bl

as
t

Su
da

rk
in

a
H

um
an

 (
37

,4
4)

42
–4

9×
 S

M
B

(4
6)

19
68

R
os

to
v 

O
bl

as
t

Su
da

rk
in

a
H

um
an

 (
37

,4
4)

50
×

 S
M

B
(3

5)

19
68

R
os

to
v 

O
bl

as
t

Su
da

rk
in

a
H

um
an

 (
37

,4
4)

56
–5

8×
 S

M
B

(3
8)

19
68

A
st

ra
kh

an
 O

bl
as

t
H

p-
16

H
ya

lo
m

m
a 

m
ar

gi
na

tu
m

 ti
ck

s 
co

lle
ct

ed
 f

ro
m

 r
oo

ks
 (

78
)

N
R

(7
8)

19
69

R
us

si
a

H
p-

15
H

ya
lo

m
m

a 
m

ar
gi

na
tu

m
 ti

ck
s 

(3
7)

6–
7×

 S
M

B
(3

7)

≤ 
19

69
N

R
K

67
/6

7
H

um
an

 (
48

,1
06

)
SM

B
(4

8)

19
70

N
ig

er
ia

A
r 

43
66

5†
H

ya
lo

m
m

a 
ru

fi
pe

s 
tic

ks
 e

xp
er

im
en

ta
lly

 in
oc

ul
at

ed
 w

ith
 I

bA
n 

76
20

 (
77

)
Ib

A
n 

76
20

 (
N

R
),

 1
×

 ti
ck

(7
7)

19
76

Pa
ki

st
an

C
on

go
, J

D
 2

06
H

ya
lo

m
m

a 
an

at
ol

ic
um

 ti
ck

s 
(4

8)
N

R
(4

8)

≤ 
19

79
Pa

ki
st

an
H

az
ar

a 
(J

C
 2

80
)

Ix
od

es
 re

di
ko

rz
ev

i t
ic

ks
 (

48
,1

07
)

N
R

(4
8)

≤ 
19

79
N

ig
er

ia
Ib

A
n 

76
20

†
A

te
le

ri
x 

al
bi

ve
nt

ri
s 

he
dg

eh
og

 e
xp

er
im

en
ta

lly
 in

fe
ct

ed
 w

ith
 I

nA
n 

76
20

 
(1

08
)

3×
 S

M
B

, 1
×

 h
ed

ge
ho

g
(1

08
)

≤ 
19

79
N

R
K

12
8-

12
H

ya
lo

m
m

a 
as

ia
tic

um
 ti

ck
s 

(4
8)

SM
B

(4
8)

19
81

So
ut

h 
A

fr
ic

a
SP

U
 4

/8
1

H
um

an
, f

at
al

 (
65

)
2×

 c
el

l c
ul

tu
re

, 3
×

 S
M

B
; 2

×
 c

el
l c

ul
tu

re
, 

4×
 S

M
B

(3
6,

50
,5

1)

19
84

So
ut

h 
A

fr
ic

a
SP

U
 4

1/
84

H
um

an
, n

on
-f

at
al

 (
36

)
8×

 S
M

B
(3

6)

19
88

So
ut

he
rn

 M
au

ri
ta

ni
a

D
ak

 H
49

19
9

H
um

an
, f

at
al

 (
10

9)
3×

 S
M

B
(3

5,
52

,9
7)

19
88

N
or

th
-c

en
tr

al
 S

en
eg

al
A

rD
49

08
8

H
ya

lo
m

m
a 

im
pe

lta
tu

m
 ti

ck
s 

co
lle

ct
ed

 f
ro

m
 s

he
ep

 (
11

0)
3×

 S
M

B
(9

7)

A
bb

re
vi

at
io

ns
: N

R
, n

ot
 r

ep
or

te
d;

 S
M

B
, s

uc
kl

in
g 

m
ou

se
 b

ra
in

 p
as

sa
ge

 o
r 

su
sp

en
si

on
; S

SR
, S

ov
ie

t S
oc

ia
lis

t R
ep

ub
lic

. S
om

e 
is

ol
at

es
 (

de
no

te
d 

w
ith

 †
) 

w
er

e 
ob

ta
in

ed
 v

ia
 e

xp
er

im
en

ta
l i

no
cu

la
tio

n 
of

 ti
ck

s 
or

 
m

am
m

al
s 

an
d 

re
-i

so
la

tio
n.

Antiviral Res. Author manuscript; available in PMC 2017 November 01.


	Abstract
	1. Scope of this review
	2. Background: maintenance and transmission of CCHFV
	3. Experimental infection in wild mammals
	3.1. Hares
	3.1.1. Former Soviet Union
	3.1.2. Africa

	3.2. Ground squirrels
	3.2.1. Former Soviet Union
	3.2.2. Africa

	3.3. Hedgehogs
	3.3.1. Former Soviet Union
	3.3.2. Africa

	3.4. Small rodents
	3.4.1. Africa


	4. Experimental infection in livestock
	4.1. Cattle
	4.1.1. Former Soviet Union
	4.1.2. Africa

	4.2. Sheep
	4.2.1. Former Soviet Union
	4.2.1. Africa

	4.3. Equids
	4.3.1. Former Soviet Union


	5. Experimental infection in birds
	5.1. Former Soviet Union
	5.2. Africa

	6. Experimental vector transmission studies
	6.1. Transmission from ticks to vertebrates
	6.2. Transmission from vertebrates to ticks
	6.3. Tick-borne transmission from vertebrate to vertebrate

	7. What we have learned
	8. What we still do not know
	9. Recommendations for future investigations
	Experimental design and reporting of data
	Advanced experimental infection studies of wild vertebrates
	Investigation of vector-dependent factors in animal studies
	Considerations for natural tick ecology

	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3
	Table 4

